نمایان
www.3manage.com
لایسنس آنتی ویروس

برنامه برج هانوی به زبان ویژوال بیسیک

پروژه برنامه برج هانوی به زبان بیسیک (سورس )

این مساله علاوه بر روش تابع بازگشتی راه حلهای غیربازگشتی نیز دارد. در بالا به این نتیجه رسیدیم که بهترین راه حل برای جابجا کردن n دیسک ۲n – ۱ حرکت نیاز دارد. در نتیجه مرتبه راه حلهای آن در بهینه‌ترین حالت، چه بازگشتی و چه غیربازگشتی، از مرتبه ( O( 2n خواهد بود. اما آنچه که راه حل بازگشتی و غیربازگشتی را از هم متمایز می‌کند مرتبه فضای مصرفی آن است. حل بازگشتی مساله، فراخوانی‌های تو در تو و فضای پشته از مرتبه ( O( n نیاز دارد. در حالی که می‌توان با استفاده از روش غیربازگشتی این مرتبه را به ( O( 1 کاهش داد. البته این مساله تنها دلیل بررسی روش غیربازگشتی نیست. تبدیل مرتبه مصرف فضا از ( O( n به ( O( 1 زمانی که مرتبه اجرایی الگورینم ( O( 2n است چندان قابل توجه نیست. دلیل دیگر می‌تواند این باشد که برخی زبانهای برنامه نویسی از فراخوانی بازگشتی توابع پشتیبانی نمی‌کنند و مجبور به استفاده ار روشهای غیربازگشتی هستند. اما دلیل اصلی این است که با بررسی این روشها تمرین کوچکی برای تبدیل الگوریتمهای بازگشتی به غیربازگشتی انجام می دهیم.

تا کنون چندین روش مختلف جهت پیاده سازی غیربازگشتی حل مساله برج هانوی ارائه شده است، که ما در اینجا دو روش را معرفی کرده، و تنها یکی از آنها را به طور کامل بررسی می کنیم. توجه داشته باشید که همه جزئیات حل مساله به صورت دقیق و مشروح مطرح نمی‌شود، و استدلال قسمتی از نتیجه گیری‌ها به عنوان تمرین به شما واگذار می‌شود.

  دانلود فایل حجم ۸ کیلوبایت

رمز فایل فشرده : www.3manage.com

یک نظر بگذارید

دسته‌ها
اين سايت را حمايت مي کنم